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The theoretic'al determination of total pressure losses and other aerodynamic parameters in two-dimensional and 
axisymmetric channels is often difficult. In connection with the recent appearance of certain misleading papers on this 
subject and the existing confusion of terminology, further discussion is very desirable. 

In the two preceding notes two main questions were raised: the use of methods of boundary layer theory to ca lcu-  
late hydraulic losses in unseparated diffuser flow and the possibility of dividing Iosses in diffusers with separated flow into 
"friction losses" and "expansion losses" using generalized empirical relations. 

Zaryankin is right in criticizing the lack of a physical basis for dividing the losses in diffusers into two components 
This was clear even to the author of the method, Idelchik, who stressed that the separation was arbitrary [1]. It is dif- 
ficult to agree with Zaryankin, however, when he rejects the approximate engineering method, without offering any- 
thing in its place other than the statement that a solution of the problem is desirable "on the basis of the general 
concepts of the aerodynamics of the mechanism of losses" [26]. 

The status of both issues is correctly outlined in [27], where a sound review of Zaryankin's position is offered. 

Let us discuss the above points in more detail. 

An arbitrary division of the total pressure losses in diffusers into two components ( ' f r ic t ion losses" and "expansion 
losses") was proposed by Idelehik in deriving an engineering method for calculating the losses in diffusers for all possible 
values of the expansion angle [1]. Since the so-called "friction losses" are very small at comparatively large expansion 
angles, while the "expansion losses" are determined on the basis of a generalization of the experimental data, it is 
natural that Idelchik's proposed interpolation formulas for not very small diffuser expansion angles should give results 
close to reality. 

Both terms - "friction losses" and "expansion losses" - are very imprecise. If, in using the term "friction losses," 
we have in mind friction within the fluid, then the term "expansion losses" loses its meaning, since all the losses stem 
from viscosity of the fluid, i . e . ,  friction. Since the quantitative determination of the friction losses involves calculat-  
ing the friction force at the walls of the diffuser channel, the question arises whether the friction losses may not be re-  
duced to friction at the walls. In this case it would be wrong to assert that in diffusers without separation only friction 
losses occur. Indeed, in unseparated flow of a fluid in a diffuser, the total pressure losses are due both to fluid friction 
at the diffuser walls and to deformation of the velocity field in cross sections of the diffuser ("expansion losses"). 

This remark will become clear enough after examination of the possible patterns of unseparated flow in channels 
with straight axes. This is especially desirable in that in both notes, in speaking of the application of the methods of 
boundary layer theory to the calculation of flow in diffusers, the authors have in mind only one particular flow System, 
namely, flow with a potential core. However, a much wider class of unseparated flows may be studied by the methods 
of boundary layer theory. 

Linear stabilized flow in channels of constant cross section. It is known that this flow becomes steady at quite 
large distances from the inlet. The dynamic pressure at individual cross sections of the tube is then constant, as a re- 
sult of which the total pressure losses are wholly determined by the static pressure drop along the flow. Only in this spe- 
cial case are the hydraulic losses in a tube uniquely associated with the friction coefficient at the wall. Thus, for 
example, in the case of an annular tube (inside radius r~, outside rl), the following relation holds [3]: 
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ctt + ~ Q~ - dp rt - -  & ( ~,~. ) 
1 +~ dx 'P.~ ~= ' ' \  

( 1 )  

where c f l  and cf2 are the friction coefficients at the two surfaces [Cf l  = rwl/(Pu~/2), Cfz - T~2/(puZo/2)], u 6 is the max-  
imum veloci ty  in the section, and p is the pressure. 

In the par t icular  cases of a circular  (g = 0) and a two-dimensional  (g = 1) tube, gq. (1) may be s implif ied:  

d p  r 
2 ( } = 0 ,  r ~ = O ) ,  ct = - -  dx p u~ 

dp h (2) 
c t = - -  a ( ~ = 1 ,  h = = r l - - @ .  

dx fl u~ 

In the two other flow systems examined below, there is no direct  relationship between the hydraulic losses and the 
friction coeff ic ient  a t  the wall, since these two characterist ics (force and energy) are determined from two different 
equations - t h e  momentum and energy equations. 

Stabi l ized flow in a curved channel.  It is assumed here that even in the ini t ia l  section of the channel the bound- 
ary layers at  the walls are comple t e ly  fused, so that at  a l l  sections the boundary layer  thickness is equal to half  the 
width in the case of a two-dimensional  channel or to the radius in the case of an axisymmetr ie  channel.  Flow of this 
kind in two-dimensional  or axisymmetr ic  channels may  be computed using the integral  momentum relat ion 

' '  ( u! l dp ) 1 
d ~  u~ ~ ; = ~ c~, (8) - -  + - -  ( 2 ~ * *  + ~*) - -  + 2 

dx u~ u~ p u~ dx 2 

where 6, 5", 5"* are, respect ively,  the boundary layer  thickness (area), and the d isplacement  and momentum thickness. 

The invest igat ion is somewhat s implif ied in the par t icular  case of channels with straight wails. For example ,  in 
the case of a two-dimensional  channel with straight walls, l inear  s tabi l ized flow is hydrodynamical ly  possible (flow in a 
dihedral  angle from a plane source at  the vertex). Such flow has, of course, s imi la r i ty  of the ve loc i ty  profiles at a l l  

cross sections of the channel and, as a result, a constant friction coeff ic ient  along the wails. It therefore follows from 

the condition of constant flow in cross sections Q = c t6u  6 that  the Re number = 6u6/v = const. Radial flow of this kind in 
two-dimensional  channels has been thoroughly investigated both for laminar  (exact  solution of the Navier-Stokes equa-  

tions) and for turbulent flow [4, 5]. For radial  flow in a two-dimensional  channel,  integral  relat ion (8) takes the form[5] 

1 - -  H *  - -  H * * )  tg  ~ - -  1 0 " + c t ) ,  (4) 
2 2 

h dp 3* 8"* 
where the quantities cf - -  T~, ),' = H*" - -  H * * =  depend on the expansion angle of  

1 u2 O u~ dx o 
2 

the channel and the Re number Re h = hus/v and remain unchanged along the flow, a is the total  expansion angle,  and h 

is the width of the channel (h = 26). 

When a = 0, expression (4) c lear ly  transforms into (2). It is interesting to note that the total  pressure loss factor 
for any part  of such a channel is character ized by the expansion ratio n in accordance with the formula 

(5) 
= ':-o (1 - -  I/n2), 

where 

~. 1 H * - - H  *~'* 1 ),'ctg ~ ~:'::':* 
'~-o = ~ , H* * * - -  

1 H* 2 

and 6"*'~ is the energy thickness, while g0 depends only on the expansion angle and Re h. For a max imum expansion 
angle a = C~ma x, when at  al l  sections of the diffuser the turbulent boundary layer  is in the preseparated state ( c f  = 0), 
the coeff ic ient  g0 = 0.1 [5] at a l l  Reynolds numbers. Thus, even when friction at  the wails is absent, the "friction 
losses" are given by gq. (5), which coincides with gq. (3) of the first note and with Eq. (1) of the second. 

In real  conditions, radial  flow in a two-dimensional  diffuser can become established only at  some distance from 

the ini t ia l  section. Such flow was first studied exper imenta l ly  by DOnch [6] and Nikuradse [7], who showed that, for a 

fixed Re number, a l l  the flow properties are essent ial ly  determined by a single geometr ic  parameter ,  the expansion 
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angle. Perhaps this is the source of the erroneous and, unfortunately, widely held opinion that in all flow cases the ex- 
pansion angIe is the single important geometric parameter of a diffuser. 

In the theoretical investigation of stabilized turbulent flow in conical diffusers with small expansion angles the 
hypothesis that the flow is radial is often taken as a starting point, and all streamlines are assumed to be straight lines 
starting from the vertex of the cone [8-10]. It should be noted, however, that, in contrast with the corresponding flow 
in a two-dimensional diffuser, radial fl0W in a conical diffuser is hydrodynamically impossible, because here the condi- 
tions of constant flow along the diffuser (Q ~ us r 2) and constant Reynolds number (Re = rlu~ / v) are not simultane- 
onsly fulfilled. This applies equally to the case of laminar flow studied by Slezkin [11]. 

Flow in channels with a potential core. In this ease, when the channel is preceded by a tube of no great length 
and the boundary layers formed on its walls do not fuse at the exit section, the flow outside the boundary layer on the 
walls of the channel (diffuser), at any point up to the section where the boundary layers meet  or the flow separates, may 
be assumed to be potential.  In a number of cases it is assumed that at the Initial section of the channel the velocity 
distribution is uniform. In practice, an almost uniform initial velocity distribution may be achieved by mounting a 
smooth collector at the entrance. For uniform initial veloci ty distribution the length of the section of unseparated flow 
in the diffuser is a maximum. 

Modern methods of the theory of laminar and turbulent boundary layers may be widely used to solve problems thus 
formulated. There are many papers devoted to calculating flows in the inlet sections of annular, two-dimensional, and 
circular tubes and in two-dimensional and axisymmetric diffusers [12-15]. 

When a potential core exists, in the latter case the Bernoulli equation is valid, and the third term on the left of 
Eq. (3) vanishes. Then the total pressure less factor is expressed by the formula [14]: 

a*** .6g'** 
~. = , (6) 

n ( 1 -- ( 1 - 60 

where A*** and A* are the ratios of the energy area and the displacement area to the cross-sectional area, and the sub- 
script "0" corresponds to the initial section of the channel. Using Eq. (6), we can investigate the influence of the ex-  
pansion ratio, expansion angle, and initial flow nonuniformity on the loss factor for two-dimensional and axisymmetric 
diffusers. Calculations show that, for a given Re number and flow nonuniformity in the initial section, the losses in a 
channel with straight walls depend on two parameters - the expansion angle and the expansion ratio. Furthermore, with 
increase of expansion angle in a diffuser of given relative length, the total pressure loss factor decreases nntil the in- 
Creasing expansion angle causes separation of the boundary layer. 

The formula given above is known to have been extended to the case of flow of a compressible gas with and with- 
out heat transfer between the gas and the channel walis [16, 17]. Essentially similar formulas are widely used to ca lcu-  
1ate the pressure losses in the curved interblade channels of turbine cascades [18-20]. 

It should be noted that no sharp demarcation line exists between the flow systems enumerated above. 

For example, in the same channel, flow with a potential core may exist near the initial section, and after fusion 
of the boundary layers established flow. 

Although the methods of boundary layer theory are now widely applied in the investigation of unseparated flow in 
charmels, the situation is much less satisfactory as regards the theoretical determination of total pressure losses in dif- 
fusers with flow separation. In spite of isolated successes in investigating separated flow [21], the problem is far from 
resolved, and the most reliable calculations of the loss factor in diffusers with separated flow are still based on general- 
ized experimental relationships. Of course, in establishing such generalized relations, one should strive to take into 
account not only geometric but also aerodynamic flow parameters and to consider to some extent the prehistory of the 
flOW. 

Here the most reliable results are obtained on the basis of systematic experimental investigations. For example, 

Kmonicek [22] has derived interpolation formulas for the loss factor from careful measurements of the flow parameters in 
a series of conical diffusers with a wide range of variation of the expansion angle (4~ ~ and expansion ratio (1.6-16) 

and various initial flow nonuniformities. 

In a number of eases, however, it is necessary to determine without experiments the flow friction of diffusers of 

complex shape with deliberately detached flow: noncireular cross section, curved centerline, etc. For such purposes the 

so-called method of equivalent plane and conical diffusers has been widely used [2, 23]. It is usual to call a plane or 

conical diffuser equivalent to a given diffuser of complex shape, if the centerline and the areas of initial and end see- 

tions are the same. 
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It then turns out that in a number of cases, using the parameters of the equivalent diffuser - expansion ratio neq 
and expansion angle aeq - one can reduce the results of experimental investigations of diffusers of different shape to 
single "universal" relations [24, 25]. 

The faults of this method become especially evident in the case of diffusers with strongly curved axes or walls, 
since the parameters of the equivalent diffuser fall a long way short of taking fully into account the effect of curvature 
of the walls or axis. 

A sounder method for curved diffusers is that based on the concept of the local expansion angle of a curved dif- 
fuser, which has been widely used by the authors of [2]. This method allows the influence of the shape of the elements 
of the diffuser on the losses to be taken into account to any degree, and also makes the determination of the equivalent 
diffuser more accurate. The method has proved useful in comtmeting the aerodynamic contour of radial-annular dif- 
fusers [2, 24], enables qualitatively correct results to be obtained, and is in satisfactory agreement with experiment. 

However, in some cases the calculated values of the losses in radial-annular diffusers differed noticeably from the 
experimental values. 

Methods of this kind will clearly find wide application until a sounder method of calculating the flow friction in 
diffuser channels with separated flow is found. 
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